Topic outline

  • General

    Course Instructor


    Assoc. Prof. Dr. Mustafa K. Uyguroğlu

    Tel: 0392-6301433

    EE 135

    office hours

    Tuesday :10:00-10:30

    Thursday : 10:00 - 10:30

  • EENG428 Introduction to Robotics

    Basic components of robot systems; coordinate frames, homogeneous transformations, kinematics for manipulator, inverse kinematics; manipulator dynamics, Jacobians: velocities and static forces , trajectory planning, Actuators, Sensors, Vision, Fuzzy logic control of manipulator and robotic programming.

    At the end of this course, students should be able to:

    • Describe and analyze rigid motion.
    • Write down manipulator kinematics and operate with the resulting equations
    • Solve simple inverse kinematics problems.
    • Select sensors for performing robotic tasks
    • Solve motion planning problems.


    Introduction.  What Is a Robot? Classification of Robots. What Is Robotics? History of Robotics. Advantages and Disadvantages of Robots. Robot Components.Robot Degrees of Freedom. Robot Joints. Robot Coordinates. Robot Reference Frames. Programming Modes. Robot Characteristics. Robot Workspace. Robot Languages. Robot Applications.

  • This topic

    Kinematics of Robots: Position Analysis.

     Introduction. Robots as Mechanisms. Conventions. Matrix Representation. Representation of a Point in Space. Representation of a Vector in Space. Representation of a Frame at the Origin of a Fixed Reference Frame. Representation of a Frame Relative to a Fixed Reference Frame. Representation of a Rigid Body. Homogeneous Transformation Matrices. Representation of Transformations. Representation of a Pure Translation. Representation of a Pure Rotation about an Axis. Representation of Combined Transformations. Transformations Relative to the Rotating Frame. Inverse of Transformation Matrices. Forward and Inverse Kinematics of Robots. Forward and Inverse Kinematic Equations: Position. Cartesian (Gantry, Rectangular) Coordinates. Cylindrical Coordinates. Spherical Coordinates. Articulated Coordinates. Forward and Inverse Kinematic Equations: Orientation. Roll, Pitch Yam (RPY) Angles. Euler Angles. Articulated Joints. Forward and Inverse Kinematic Equations: Position and Orientation. Denavit-Hartenberg Representation of Forward Kinematic Equations of Robots. The Inverse Kinematic Solution of Robots.

  • Differential Motions and Velocities.


    Introduction. Differential Relationships. Jacobian. Differential versus Large-Scale Motions. Differential Motions of a Frame versus a Robot. Differential Motions of a Frame. Differential Translations. Differential Rotations about the Reference Axes. Differential Rotation about a General Axis qDifferential Transformations of a Frame. Interpretation of the Differential Change. Differential Changes between Frames. Differential Motions of a Robot and Its Hand Frame. Calculation of the Jacobian. How to Relate the Jacobian and the Differential Operator. Inverse Jacobian.

  • Dynamic Analysis and Forces.

    Introduction. Lagrangian Mechanics: A Short Overview. Effective Moments of Inertia. Dynamic Equations for Multiple-DOF Robots. Kinetic Energy. Potential Energy. The Lagrangian. Robot's Equations of Motion. Static Force Analysis of Robots.  Transformation of Forces and Moments between Coordinate Frames.

  • Trajectory Planning

    Introduction. Path versus Trajectory. Joint-Space versus Cartesian-Space Descriptions. Basics of Trajectory Planning. Joint-Space Trajectory Planning. Third-Order Polynomial Trajectory Planning. Fifth-Order Polynomial Trajectory Planning. Linear Segments with Parabolic Blends. Linear Segments with Parabolic Blends and Via Points. Higher-Order Trajectories. Other Trajectories. Cartesian-Space Trajectories. Continuous Trajectory Recording.

  • Past Exam Questions