CHAPTER 3

EXACT ONE-DIMENSIONAL SOLUTIONS

3.1 Introduction

- Exact solutions for simple cases are presented.
- Objective is to:
 - Understand the physical significance of each term in the equations of continuity, Navier-Stokes, and energy.
 - Identify the conditions under which certain terms can be neglected.
 - General procedure: first determine the flow field and then the temperature field.

3.2 Simplification of the Governing Equations

- Simplifying Assumptions
 (1) Laminar flow
 (2) Constant properties
 (3) Parallel streamlines (fully developed flow):
 \[v = 0 \] (3.1)

Continuity (two-dimensional, constant density):

\[\frac{\partial u}{\partial x} = 0 \] (3.2)

It follows that

\[\frac{\partial^2 u}{\partial x^2} = 0 \] (3.3)

- (3.1)-(3.3) result in significant simplifications.

(4) Negligible axial variation of temperature. For axial flow, this condition leads to

\[\frac{\partial T}{\partial x} = 0 \] (3.4)

- (3.4) is exact for certain channel flows and a reasonable approximation for others. The following are conditions that may lead to the validity of (3.4):
 (i) Parallel streamlines.
 (ii) Far away from the entrance region of a channel (infinitely long channels).
(iii) Uniform surface conditions.

- If (3.4) is valid everywhere:
 \[
 \frac{\partial^2 T}{\partial x^2} = 0 \tag{3.5}
 \]

- Rotating flows, Fig. 3.2: The streamlines are concentric circles
 \[
 \frac{\partial T}{\partial \theta} = 0 \tag{3.6}
 \]

and
 \[
 \frac{\partial^2 T}{\partial \theta^2} = 0 \tag{3.7}
 \]

3.3 Exact Solutions

- Applications of simplifications of Section 3.2.

3.3.1 Couette Flow

- This is shear driven flow
- Fluid is set in motion by moving channel surface
- Streamlines are parallel
- No axial variation
- Many terms in the Navier-Stokes equations and energy equation drop out

Example 3.1: Couette Flow with Dissipation

- Upper plate moves with velocity \(U_o \)
- Moving plate at temperature \(T_o \)
- Taking into consideration dissipation
- Determine temperature distribution and the rate of heat transfer at the moving plate
- Assume laminar flow

Solution

- Review all assumptions
- Analysis
 - Starting with the energy equation
\[
\rho c_p \left(\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} + w \frac{\partial T}{\partial z} \right) = k \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} \right) + \mu \Phi
\]
(2.19b)

Dissipation:

\[
\Phi = 2 \left[\left(\frac{\partial u}{\partial x} \right)^2 + \left(\frac{\partial v}{\partial y} \right)^2 + \left(\frac{\partial w}{\partial z} \right)^2 \right] + \left[\left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right)^2 + \left(\frac{\partial v}{\partial z} + \frac{\partial w}{\partial y} \right)^2 + \left(\frac{\partial w}{\partial x} + \frac{\partial u}{\partial z} \right)^2 \right] - 2 \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} \right)^2
\]
(2.17)

- **Simplification of the above equations:**

1. **Incompressible fluid:**
 \[
 \frac{\partial \rho}{\partial t} = \frac{\partial \rho}{\partial x} = \frac{\partial \rho}{\partial y} = \frac{\partial \rho}{\partial z} = 0
 \]
 (a)

2. **Infinite plates:**
 \[
 \frac{\partial \rho}{\partial x} = \frac{\partial \rho}{\partial z} = 0
 \]
 (b)

3. **Continuity and no-slip condition:**
 \[
 v = 0
 \]
 (f)

- **Navier-Stokes equation (2.10x):**
 \[
 \rho \left(\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} \right) = \rho g_x - \frac{\partial p}{\partial x} + \mu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right)
 \]
 (2.10x)

Introduce the above simplifications into (2.10x):

\[
\frac{d^2 u}{dy^2} = 0
\]
(j)

Solution to (j) is

\[
u = C_1 y + C_2
\]
(k)

Use boundary conditions on \(u \) to determine the two constants. Solution becomes

\[
\frac{u}{U_o} = \frac{y}{H}
\]
(3.8)

Dissipation function simplifies to:

\[
\Phi = \left(\frac{\partial u}{\partial y} \right)^2
\]
(n)
Energy equation (2.19b) simplifies to

\[k \frac{d^2T}{dy^2} + \mu \frac{U_o^2}{H^2} = 0 \]

(p)

Solution is

\[\frac{T - T_o}{\frac{\mu U_o^2}{k}} = \frac{1}{2} \left(1 - \frac{y^2}{H^2} \right) \]

(3.9)

Heat flux at the moving plate:

\[q''(H) = -k \frac{dT(H)}{dy} \]

Use (3.9)

\[q''(H) = \frac{\mu U_o^2}{H} \]

(3.10)

Example 3.2: Flow in a Tube at Uniform Surface Temperature

- Study this example with attention to physical conditions and how they lead to simplifications of the governing equations.
- Follow the procedure of Example 3.1 above

3.3.3 Rotating Flow

- Note that all angular variation of velocity, pressure and temperature vanish in Concentric rotating flows.

Example 3.3: Lubrication Oil Temperature in Rotating Shaft

- Study this example with attention to physical conditions and how they lead to simplifications of the governing equations.
- Follow the procedure of Example 3.1