Asymptotic Analysis

The main idea is to have a measure of efficiency of algorithms that

- doesn’t depend on machine specific constants and
- doesn’t require algorithms to be implemented and time taken by programs to be compared
- Asymptotic notations are mathematical tools to represent time complexity of algorithms for asymptotic analysis

-
The following 3 asymptotic notations are mostly used to represent time complexity of algorithms.

1) Θ Notation
- The theta notation bounds a function from above and below,
- so it defines exact asymptotic behavior
- A simple way to get Theta notation of an expression is to drop low order terms and ignore leading constants
- For example, consider the following expression

\[
3n^3 + 6n^2 + 6000 = \Theta(n^3)
\]

Dropping lower order terms is always fine because there will always be a \(n_0 \) after which \(\Theta(n^3) \) beats \(\Theta(n^2) \) irrespective of the constants involved
For a given function $g(n)$, we denote $\Theta(g(n))$ is following set of functions $\Theta((g(n)) = \{ f(n):$ there exist positive constants c_1, c_2 and n_0 such that

$$0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n) \text{ for all } n \geq n_0 \}$$

The above definition means, if $f(n)$ is theta of $g(n)$, then the value $f(n)$ is always between $c_1 g(n)$ and $c_2 g(n)$ for large values of n ($n \geq n_0$)

The definition of theta also requires that $f(n)$ must be non-negative for values of n greater than n_0
2) Big O Notation

- Big O notation defines an upper bound of an algorithm, it bounds a function only from above.

- For example, in the case of Insertion Sort, it takes linear time in best case and quadratic time in worst case.

- \(\therefore \) time complexity of Insertion Sort is \(O(n^2) \).

- Note that \(O(n^2) \) also covers linear time.

- If \(\Theta \) notation is used to represent time complexity of Insertion Sort, two statements should be used for best and worst cases:

 1. The worst case time complexity of Insertion Sort is \(\Theta(n^2) \).
 2. The best case time complexity of Insertion Sort is \(\Theta(n) \).
The Big O notation is useful when we only have upper bound on time complexity of an algorithm. Many times we easily find an upper bound by simply looking at the algorithm

\[O(g(n)) = \{ f(n) \text{: there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \leq f(n) \leq cg(n) \text{ for all } n \geq n_0 \} \]
3) \(\Omega \) Notation

- Just as Big O notation provides an asymptotic upper bound on a function, \(\Omega \) notation provides an asymptotic lower bound.

- Notation can be useful when we have lower bound on time complexity of an algorithm.

For a given function \(g(n) \), we denote by \(\Omega(g(n)) \) the set of functions

\[
\Omega(g(n)) = \{ f(n) : \text{there exist positive constants } c \text{ and } n_0 \text{ such that} \\
0 \leq cg(n) \leq f(n) \text{ for all } n \geq n_0 \}.
\]

Let us consider the same Insertion Sort example here.

The time complexity of Insertion Sort can be written as \(\Omega(n) \), but it is not a very useful information about insertion sort, as we are generally interested in worst case and sometimes in average case.

A good example on Analysis of Bubble Sort Algorithm.
Exercise

Which of the following statements is/are valid?

1. Time Complexity of QuickSort is \(\Theta(n^2) \)
2. Time Complexity of QuickSort is \(\mathcal{O}(n^2) \)
3. For any two functions \(f(n) \) and \(g(n) \), we have \(f(n) = \Theta(g(n)) \) if and only if \(f(n) = \mathcal{O}(g(n)) \) and \(f(n) = \Omega(g(n)) \)
4. Time complexity of all computer algorithms can be written as \(\Omega(1) \)
References

Lec 1 | MIT (Introduction to Algorithms)

This article is contributed by Abhay Rathi. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Related Topics

- A Problem in Many Binary Search Implementations
- Analysis of Algorithms | Set 4 (Analysis of Loops)
- NP-Completeness | Set 1 (Introduction)
- Static and Dynamic Libraries | Set 1
- The Ubiquitous Binary Search | Set 1
- Reservoir Sampling
- Analysis of Algorithms | Set 2 (Worst, Average and Best Cases)
- Analysis of Algorithms | Set 1 (Asymptotic Analysis)
Writing code in comment? Please use ideone.com and share the link here.

- Advanced Data Structures
- Dynamic Programming
- Greedy Algorithms
- Backtracking
- Mathematical Algorithms
- Recursion
- Geometric Algorithms
Popular Posts

- All permutations of a given string
- Memory Layout of C Programs
- Understanding “extern” keyword in C
- Median of two sorted arrays
- Tree traversal without recursion and without stack!
- Structure Member Alignment, Padding and Data Packing
- Intersection point of two Linked Lists
- Lowest Common Ancestor in a BST.
- Check if a binary tree is BST or not
- Sorted Linked List to Balanced BST