Midterm EXAMINATION

November 18, 2017

Duration : 100 minutes

Number of Questions: 4

Good Luck

<table>
<thead>
<tr>
<th>Question</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25</td>
</tr>
<tr>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>25</td>
</tr>
<tr>
<td>4</td>
<td>25</td>
</tr>
<tr>
<td>TOTAL</td>
<td>100</td>
</tr>
</tbody>
</table>

Read the following instructions carefully:
1. Calculators are not allowed.
2. Switch off mobile phones and do not borrow any stationery from your friends.
3. In your solutions, show all details you claim credit for.
Question 1

a) Convert the following number with the indicated base to decimal. (Show your steps and only the first two digits after the decimal point.) (5 pts.)

\[(245.34)_6 = 2 \times 6^2 + 4 \times 6^1 + 5 \times 6^0 + 3 \times 6^{-1} + 4 \times 6^{-2}
\]

\[= 72 + 24 + 5 + \frac{3}{6} + \frac{4}{36} = 101 + \frac{22}{36} = 101.61\]

b) Convert the following decimal numbers to numbers in base 5. (Show your steps.) (6 pts.)

i. Integer Remainder

<table>
<thead>
<tr>
<th>Integer</th>
<th>Remainder</th>
</tr>
</thead>
<tbody>
<tr>
<td>48</td>
<td>9</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

\[(48)_{10} = (143)_5\]

ii. 0.88

<table>
<thead>
<tr>
<th>Integer</th>
<th>Fraction</th>
<th>Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.88 x 5= 4</td>
<td>+ 0.4</td>
<td>a₁ = 4</td>
</tr>
<tr>
<td>0.4 x 5 = 2</td>
<td>+ 0.0</td>
<td>a₂ = 2</td>
</tr>
</tbody>
</table>

\[(0.88)_{10} = (0.42)_5\]
c) Convert \((1110111110.01101011001\) to hexadecimal and to octal. (4 pts.)

\[001110111110.01101000\]

\[= (3BE.68)_{16}\]

\[= (1676.32)_{8}\]

\[\left(\begin{array}{cccccc}
0 & 0 & 1 & 1 & 1 & 1 \\
1 & 6 & 7 & 6 & 3 & 2
\end{array}\right)_{2}\]

d) Convert \(+31\) and \(+56\) to binary, using the **signed-1’s complement** representation and **enough digit to accommodate** the numbers. Then perform the binary equivalent of \((-31) \text{ } + (+56)\) and \((-31) \text{ } - (+56)\). (10 pts.)

\[\begin{array}{c}
\text{('10' of) } 31 \\
\text{('10' of) } 56
\end{array}\]

\[\begin{array}{c}
\text{('01' of) } 31 \\
\text{('01' of) } 56
\end{array}\]

\[\begin{array}{c}
(31)_{io} = (11111)_{2} \\
(56)_{io} = (111000)_{2} \\
(31)_{io} + (56)_{io} = (87)_{io} = (1010111)_{2}
\end{array}\]

Therefore

\[(+87)_{io} = (01010111)_{2} \Rightarrow \text{requires 8 bits.}\]

\[(+31)_{io} = (00011111)_{2} \text{ signed-1’s complement of } (-31)_{io} = (11100000)\]

\[(+56)_{io} = (00111000)_{2} \text{ signed-1’s complement of } (-56)_{io} = (11000111)_{2}\]

\[\begin{array}{c}
\text{(-31)} \\
\text{(+56)}
\end{array}\]

\[\begin{array}{c}
\text{ (+2 5)}
\end{array}\]

\[\begin{array}{c}
\text{+0 0 1 1 0 0 0 0}
\end{array}\]

\[\text{+0 0 0 1 1 0 0 0 0}
\]

\[\begin{array}{c}
\text{+1}
\end{array}\]

\[\text{0 0 0 1 1 0 0 1}
\]

\[\text{(-31) - (+56) = (-31) + (-56)}
\]

\[\begin{array}{c}
\text{(-3 1)} \\
\text{(-5 6)} \\
\text{(-8 7)}
\end{array}\]

\[\begin{array}{c}
\text{+1 1 0 0 0 0 1 1 1}
\end{array}\]

\[\text{+1 0 1 0 1 1 1 1 1}
\]

\[\text{0 1 0 0 0 1 0 0 0 0}
\]

Since the most significant bit is 1 that is a negative number. In order to find the result - (1’s complement of the result) = -(01010111) = -87_{10}
Question 2

a) Simplify the following Boolean functions to a minimum number of literals using algebraic manipulation.

\[F(x, y, z) = x' y' z + xy' + yz + xyz' \]

i. \[F(x, y, z) = y'(x'z + x) + y(z + xz') = y'(x' + x)(z + x) + y(z + z')(z + x) \]

\[F(x, y, z) = (y' + y)(x + z) = (x + z) \]

\[F(w, x, y, z) = \sum(0, 1, 2, 4, 6, 8, 10) \]

\[F(w, x, y, z) = w'x' y' z' + w'x' y' z + w' x' y' z + w' x y' z' + w' x y' z + w' x y z' + w' x y z + w x y' z ' \]

b) \[F(w, x, y, z) = w' x' y' + w' x' z + w' x z' + w x' z' \]

\[F(w, x, y, z) = w' x' y' + w' z' (x' + x) + (w + w') x' z' \]

\[F(w, x, y, z) = w' x' y' + w' z' + x' z' \]

(15 pts.)
b) Express the following function as a sum of minterms and as a product of maxterms (10 pts.)

\[
F(w, x, y, z) = w'(x \oplus y) + w(y \odot z)
\]

\[
F(w, x, y, z) = w'(x'y + xy') + w(y'z' + yz) = w'x'y + w'xy' + wy'z' + wyz
\]

\[
F(w, x, y, z) = w'x'y(z' + z) + w'xy'(z' + z) + w(x' + x)y'z' + w(x' + x)y'z
\]

\[
F(w, x, y, z) = w'x'y + w'x'yz + w'xyz + w'xy'z + wx'y'z' + wxy'z + wx'yz + wxyz
\]

\[
F(w, x, y, z) = m_2 + m_3 + m_4 + m_8 + m_{12} + m_{11} + m_{15}
\]

\[
F(w, x, y, z) = \sum (2, 3, 4, 5, 8, 11, 12, 15)
\]

and Product of Maxterms:

\[
F(w, x, y, z) = \prod (0, 1, 6, 7, 9, 10, 13, 14)
\]
Question 3

For a given Boolean function

\[F(A,B,C,D) = \sum (2, 4, 7, 13, 14) \]

\[d(A,B,C,D) = \sum ((A \oplus B \oplus C \oplus D)') \]

a) Determine the sum of products (SOP).

b) Implement \(F \) with only NAND gates.

c) Determine the product of sums (POS).

d) Implement \(F \) with only NOR gates.

(25 pts.)

For a given Boolean function

\[F(A,B,C,D) = \sum (2, 4, 7, 13, 14) \]

\[d(A,B,C,D) = \sum ((A \oplus B \oplus C \oplus D)') \]

a. Determine the sum of products (SOP).

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

b. Implement \(F \) with only NAND gates.

\[F = B + A'C \]

\[F = (B'.(A'C)')' \]

\[A' \]

\[C \]

\[B' \]

\[F \]

F = B + A'C

F = (B'.(A'C)')'

\[\]

c. Determine the product of sums (POS).
d. Implement F with only NOR gates.

\[
F = (A'+B) (B+C)
\]

\[
F = (A'+B)' + (B+C)'
\]

\[
F = (A'+B) (B+C)
\]

\[
F' = AB' + B'C'
\]
Question 4

Analyse the following circuit

\[\text{F1 = A.B, F2 = (B \oplus C)'}, \]
\[\text{F3 = (A.B)' . C' = (A' + B') C' = A'C' + B'C'} \]
\[\text{F4 = (((B \oplus C)')' . (A'C' + B'C)')} \]
\[\text{= ((B \oplus C)' . (A'C' + B'C)')} \]
\[\text{= (B \oplus C)' . (A + C) . (B + C)} \]
\[\text{= (BC' + B'C) (AB + AC + BC + C)} \]
\[\text{= ABC' + ABB'C + ACB'C + ACB'C' + BCB'C + CBC' + CB'C + CB'C} \]
\[\text{= ABC' + AB'C' + B'C} \]
\[\text{= ABC' + B'C (A + 1)} \]
\[\text{= ABC' + B'C} \]
\[\text{F5 = (ABC' + B'C')} \oplus A.B \]
a. Use the truth table and determine the output \(F \) as sum of minterms and product of max terms.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>A'</th>
<th>B'</th>
<th>C'</th>
<th>A.B</th>
<th>ABC'</th>
<th>B'C</th>
<th>F4</th>
<th>F5</th>
<th>SOP</th>
<th>POS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>

\[
F(A,B,C,D) = \bigoplus (1, 5, 7)
\]
\[
F(A,B,C,D) = \bigwedge (0, 2, 3, 4, 6)
\]

b. Use Karnaugh Map to simplify the equations obtained in (a).

\[F = B'C + AC \]
\[F' = C + A'B \]
\[F = C' (A+B') \]

c. Implement the circuits with minimum number of gates.