COURSE DESCRIPTION

Year and Semester: 2, FALL, SPRING
Credit Hour: (4, 1) 4
Pre-requisite(s): EENG112/ INFE112
Academic Term: Fall 2017-2018

Catalog Description:

Prerequisite by Topic:
Detailed knowledge and experience on C-Language as a high-level programming language.

Instructors:

<table>
<thead>
<tr>
<th></th>
<th>Office Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Hasan AMCA</td>
<td>Wed. 09.30-10.20</td>
</tr>
<tr>
<td>Office Tel: 630 1500</td>
<td></td>
</tr>
<tr>
<td>hasan.amca@emu.edu.tr</td>
<td></td>
</tr>
<tr>
<td>Saeed Mohammadzadeh</td>
<td>Tue. 09.30-10.20</td>
</tr>
<tr>
<td>Office Tel: 2779</td>
<td></td>
</tr>
<tr>
<td>saeed.mohammadzadeh@cc.emu.edu.tr</td>
<td></td>
</tr>
</tbody>
</table>

Lab Assistant(s): Please see the lab web page for details at http://faraday.ee.emu.edu.tr/ee212-lab or follow the ling from the course web page.

Textbook(s):
For this course there will be NO main textbook and the notes prepared by the lecturer will be used. However, most of the concepts studied can be found in the book “C How to Program, H. M. Deitel and P. J. Deitel, Prentice Hall, 5th (or above) edition”.

References:

Course Objectives:
At the end of this course, students will be able to:
1. understand the fundamental data structures and Abstract Data Types,
2. understand the main sorting and searching algorithms and recursion,
3. analyze the time and space complexity of a given algorithm,
4. understand and implement stacks and queues,
5. process the linked list and tree structures,
6. understand the graph terminology and perform basic graph operations.
COURSE OUTLINE & ORGANIZATION

Review of fundamental topics in C:
- Functions; call by value and call by reference.
- Arrays; single subscripted arrays and multiple subscripted arrays, Pointers, Structures.
- Dynamic memory allocation.

Structures
- Defining structures, accessing members using dot or arrow operators, typedef usage, examples.

The Stack and Recursion
- Stack as an Abstract Data Type, primitive Stack operations, Representing Stack in C, Examples

MIDTERM Exam I

Linked Lists
- Insertion and deletion, Linked implementation of Stacks and Queues, Linked List as a Data Structure, array implementation of Lists.
- Other List Structures; Circular Lists, Doubly Linked Lists.

Queues
- The Queue as an Abstract Data Type, C implementation of Queues, Priority Queue

Trees
- Binary Trees, Binary Tree representation, Representing Lists as Binary Trees.
- Trees and their Applications; Tree Searching, Tree Traversals, insertion and deletion.

FINAL Exam

Laboratory Work:
Laboratory sessions include C-Language as a high level programs for the implementation of data structures. One assignment is given for each fundamental type.

Grading Policy
- **Homework**: 5%
- **QUIZ**: 10%
- **Midterm I**: 30%
- **Laboratory**: 15%
- **Final Examination**: 40%.

Exemption Policy:
Students must contact their lecturer for exemption during first week of the semester.

NG Policy:
1. Students who do not attend more than 60 % of the course lecture hours will be given NG grade.
2. Students who miss more than 2 weeks of lab sessions will also be given NG grade.

Makeup and Re-sit Policies
Students with an NG grade cannot take the make-up or re-sit exam.

Relationship of Course to Program Outcomes
The course has been designed to contribute to the following program outcomes:
1. An ability to apply knowledge of mathematics, science, and engineering
2. An ability to design a system, component, or process to meet desired needs within realistic constraints
3. An ability to identify, formulate and solve engineering problems
4. An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.