Examples for Graph Sketching

Mustafa Riza

October 18, 2012

1 Graph of a Polynomial

Sketch the graph of $y = x^4 - 12x^3 + 48x^2 - 64x = x(x-4)^3$.

- 1. Domain: $x \in \mathbb{R}$
- 2. *x* and *y*-intercepts:

x-intercept:

$$y = 0 \iff x(x-4)^3 = 0 \iff x = 0 \text{ or } x = 4.$$

So the *x*-intercepts are: (0,0) and (4,0).

y-intercept:

$$x = 0 \Longrightarrow y = 0$$

So the y-intercept is: (0,0)

- 3. Critical Points and Local Extreme Values:
 - (a) Find f'(x)

$$f'(x) = (x-4)^3 + x \cdot 3(x-4)^2 = (x-4+3x)(x-4)^2 = 4(x-1)(x-4)^2$$

(b) Find all critical points:

$$f'(x) = 0:$$

$$f'(x) = 4(x-1)(x-4)^2 = 0 \iff x = 1 \text{ or } x = 4.$$

f'(x) is not defined: f'(x) is defined for all real x.

(c) Increasing, Decreasing intervals:

	$-\infty < x < 1$	1	< x <	4	$ < x < \infty$
f'(x)	_	0	+	0	+
f(x)	¥	loc.	7		7
		min.			

(d) Evaluate f(x) at each critical point:

local min at (1, -27).

We have neither a local maximum or Minimum at (4,0).

- 4. Determine Concavity and Points of Inflection:
 - (a) Find f''(x)

$$f''(x) = 4(x-4)^2 + 4(x-1) \cdot 2(x-4) = 4(x-4)(x-4+2x-2) =$$
$$= 4(x-4)(3x-6) = 12(x-2)(x-4)$$

(b) Find all potential points of inflection:

$$f''(x) = 0$$
:

$$f''(x) = 0 \iff 12(x-2)(x-4) = 0 \iff x = 2 \text{ or } x = 4$$

f''(x) is not defined: As f(x) is a polynomial f''(x) is defined for all real x.

(c) Intervals of concavity

	$-\infty < x < 1$	2	< x <	4	$ < x < \infty$
f''(x)	+	0	_	0	+
f(x)	U	infl.	\cap	infl.	U
		point		point	

- (d) The points of inflection are: (2, -16) and (4, 0)
- 5. Asymptotes

Horizontal Asymptote: None

Vertical Asymptote: None **Oblique Asymptote:** None

6. Sketch the graph:

7. The range of f(x) is $[-27, \infty)$.

2 Graph of a function with vertical and horizontal asymptotes

Sketch the graph of $y = \frac{x^2 - 1}{x^2 - 4}$

- 1. Domain: $x \in \mathbb{R} \setminus \{-2, 2\}$
- 2. *x* and *y*-intercepts:

x-intercept:

$$y = 0 \iff x^2 - 1 = 0 \iff x = -1 \text{ or } x = 1.$$

So the *x*-intercepts are: (-1,0) and (1,0).

y-intercept:

$$x = 0 \Longrightarrow y = \frac{1}{4}$$

So the *y*-intercept is: $(0, \frac{1}{4})$

- 3. Critical Points and Local Extreme Values:
 - (a) Find f'(x) $f'(x) = \frac{2x(x^2 4) (x^2 1)2x}{(x^2 4)^2} = -\frac{6x}{(x^2 4)^2}$
 - (b) Find all critical points:

$$f'(x) = 0$$
:

$$f'(x) = -\frac{6x}{(x^2 - 4)^2} = 0 \iff 6x = 0 \iff x = 0.$$

- f'(x) is not defined: f'(x) is defined at $x = \pm 2$, which are outside the domain and therefore not critical points.
- (c) Increasing, Decreasing intervals:

	$-\infty < x < \infty$	-2	< x <	0	< x <	2	$ < x < \infty$
f'(x)	+	n.d.	+	0	-	n.d.	_
f(x)	7		7	loc.	7		7
				max.			

(d) Evaluate f(x) at each critical point:

local max at $(0, \frac{1}{4})$.

We have neither a local maximum or minimum at $x = \pm 2$.

- 4. Determine Concavity and Points of Inflection:
 - (a) Find f''(x)

$$f''(x) = -\frac{6(x^2 - 4)^2 - 6x \cdot 2(x^2 - 4)2x}{(x^2 - 4)^4} = -\frac{(x^2 - 4)(6(x^2 - 4) - 24x^2)}{(x^2 - 4)^4} = \frac{6(3x^2 + 4)}{(x^2 - 4)^3}$$

(b) Find all potential points of inflection:

f''(x) = 0: There is no x in the domain, s.t. f''(x) = 0

f''(x) is not defined: f''(x) is not defined at $x=\pm 2$, which are outside the domain and therefore no possible inflection points.

(c) Intervals of concavity

- (d) There are no inflection points.
- 5. Asymptotes

Horizontal Asymptote:

$$\lim_{x \to \pm \infty} \frac{x^2 - 1}{x^2 - 4} = \lim_{x \to \pm \infty} \frac{x^2 \left(1 - \frac{1}{x^2}\right)}{x^2 \left(1 - \frac{4}{x^2}\right)} = \lim_{x \to \pm \infty} \frac{1 - \frac{1}{x^2}}{1 - \frac{4}{x^2}} = 1$$

So we have a horizontal asymptote y=1.

Vertical Asymptote: Vertical asymptotes appear where the function is not defined. The function is not defined at $x = \pm 2$. Therefore we have to examine the following limits.

$$\lim_{x \to -2^{-}} \frac{(x+1)(x-1)}{(x+2)(x-2)} = \infty, \quad \lim_{x \to -2^{+}} \frac{(x+1)(x-1)}{(x+2)(x-2)} = -\infty$$

so we have a vertical asymptote x = -2.

$$\lim_{x \to 2^{-}} \frac{(x+1)(x-1)}{(x+2)(x-2)} = -\infty, \quad \lim_{x \to 2^{+}} \frac{(x+1)(x-1)}{(x+2)(x-2)} = +\infty$$

so we have a vertical asymptote x = 2.

Oblique Asymptote: None

6. Sketch the graph:

7. The range of f(x) is $\left(-\infty, \frac{1}{4}\right] \cup (1, \infty)$.

3 Graph of a function with vertical and oblique asymptotes

Sketch the graph of $y = \frac{x^2 + 2x + 4}{2x} = \frac{x}{2} + 1 + \frac{2}{x}$

- 1. Domain: $x \in \mathbb{R} \setminus \{0\}$
- 2. *x* and *y*-intercepts:

*x***-intercept:** no *x*-intercept

*y***-intercept:** no *y*-intercept

So there are no *x*- and *y*- intercepts.

- 3. Critical Points and Local Extreme Values:
 - (a) Find f'(x)

$$f'(x) = \frac{1}{2} - \frac{2}{x^2} = \frac{x^2 - 4}{2x^2} = \frac{(x+2)(x-2)}{2x^2}$$

(b) Find all critical points:

$$f'(x) = 0$$
:

$$f'(x) = \frac{x^2 - 4}{2x^2} = 0 \iff x^2 - 4 = 0 \iff x = \pm 2.$$

- f'(x) is not defined: f'(x) is defined at x=0, which are outside the domain and therefore not a critical point.
- (c) Increasing, Decreasing intervals:

	$-\infty < x < 0$	-2	< x <	0	< x <	2	$ < x < \infty$
f'(x)	+	0	_	n.d.	_	0	+
f(x)	7	loc.	×		\searrow	loc.	7
		max.				min.	

(d) Evaluate f(x) at each critical point:

local maximum at (-2, -1).

local minimum at (2,3) We have neither a local maximum or minimum at x=0.

- 4. Determine Concavity and Points of Inflection:
 - (a) Find f''(x)

$$f''(x) = \frac{d}{dx} \left(\frac{1}{2} - \frac{2}{x^2} \right) = \frac{4}{x^3}$$

(b) Find all potential points of inflection:

$$f''(x) = 0$$
: There is no x in the domain, s.t. $f''(x) = 0$

f''(x) is not defined: f''(x) is not defined at x = 0, which is outside the domain and therefore no possible inflection point.

(c) Intervals of concavity

$$\begin{array}{c|cccc} & -\infty < x < & 0 & < x < \infty \\ \hline f''(x) & - & \text{n.d.} & + \\ \hline f(x) & \cap & & \cup \\ \hline \end{array}$$

- (d) There are no inflection points.
- 5. Asymptotes

Horizontal Asymptote:

$$\lim_{x \to \pm \infty} \left(\frac{x}{2} + 1 + \frac{2}{x} \right) = \pm \infty$$

So we have no horizontal asymptote.

Vertical Asymptote: Vertical asymptotes appear where the function is not defined. The function is not defined at x=0. Therefore we have to examine the following limits.

$$\lim_{x\rightarrow 0^-}\left(\frac{x}{2}+1+\frac{2}{x}\right)=-\infty, \lim_{x\rightarrow 0^+}\left(\frac{x}{2}+1+\frac{2}{x}\right)=\infty$$

so we have a vertical asymptote x = 0.

Oblique Asymptote: The oblique asymptote can be found easily by considering the function:

$$f(x) = \underbrace{\frac{x}{2} + 1}_{\text{oblique asymptote}} + \frac{2}{x}$$

Let us test this claim. Therefore we have to check the limit $\lim_{x\to\pm\infty} (f(x)-(ax+b))=0$.

$$\lim_{x\to\pm\infty}\left[\left(\frac{x}{2}+1+\frac{2}{x}\right)-\left(\frac{x}{2}+1\right)\right]=\lim_{x\to\pm\infty}\left[\frac{x}{2}+1+\frac{2}{x}-\frac{x}{2}-1\right]=\lim_{x\to\pm\infty}\frac{2}{x}=0$$

7

Therefore $y = \frac{x}{2} + 1$ is an oblique asymptote to the graph of f(x).

6. Sketch the graph:

7. The range of f(x) is $(-\infty, -1] \cup [3, \infty)$.

4 Graph of a root function

Sketch the graph of $y = (x^2 - 1)^{2/3}$

- 1. Domain: $x \in \mathbb{R}$
- 2. *x* and *y*-intercepts:

x-intercept:

$$f(x) = 0 \iff (x^2 - 1)^{2/3} = 0 \iff x^2 - 1 = 0 \iff x = \pm 1$$

So we have two *x*-intercepts at (-1,0) and (1,0)

y-intercept:

$$f(0) = (0-1)^{2/3} = 1$$

So we have a y-intercept at (0, 1).

- 3. Critical Points and Local Extreme Values:
 - (a) Find f'(x)

$$f'(x) = \frac{2}{3}(x^2 - 1)^{-1/3}2x = \frac{4x}{3(x^2 - 1)^{1/3}}$$

(b) Find all critical points:

$$f'(x) = 0$$
:

$$f'(x) = \frac{4x}{3(x^2 - 1)^{1/3}} = 0 \iff 4x = 0 \iff x = 0.$$

- f'(x) is not defined: f'(x) is defined at $x = \pm 1$, which are inside the domain and therefore critical points.
- (c) Increasing, Decreasing intervals:

	$-\infty < x < 0$	-1	< x <	0	< x <	1	$ < x < \infty$
f'(x)	_	n.d.	+	0	_	n.d.	+
f(x)	¥	loc.	7	loc.	>	loc.	7
		min.		max.		min.	

(d) Evaluate f(x) at each critical point:

local maximum at (0,1).

local minima at (-1,0) and (1,0).

- 4. Determine Concavity and Points of Inflection:
 - (a) Find f''(x)

$$f''(x) = \frac{4}{3} \frac{(x^2 - 1)^{1/3} - x \cdot \frac{1}{3}(x^2 - 1)^{-2/3}2x}{(x^2 - 1)^{2/3}} = \frac{4}{3} \frac{\frac{x^2}{3} - 1}{(x^2 - 1)^{4/3}} = \frac{4}{9} \frac{x^2 - 3}{(x^2 - 1)^{4/3}}$$

(b) Find all potential points of inflection:

$$f''(x) = 0$$
:

$$f''(x) = 0 \iff \frac{4}{9} \frac{x^2 - 3}{(x^2 - 1)^{4/3}} = 0 \iff x^2 - 3 = 0 \iff x = \pm \sqrt{3}$$

f''(x) is not defined: f''(x) is not defined at $x = \pm 1$, which is inside the domain and therefore possible inflection points.

(c) Intervals of concavity

	$-\infty < x < \infty$	$-\sqrt{3}$	< x <	-1	< x <	1	< x <	$\sqrt{3}$	$ < x < \infty$
f''(x)	+	0	_	n.d.	_	n.d.	_	0	+
f(x)	U	infl.	\cap		Λ		Λ	infl.	U
		point						point	

(d) There are two points of inflection at $(-\sqrt{3}, 2^{2/3})$ and $(\sqrt{3}, 2^{2/3})$.

5. Asymptotes

Horizontal Asymptote:

$$\lim_{x \to \pm \infty} \left(x^2 - 1 \right)^{2/3} = \infty$$

So we have no horizontal asymptote.

Vertical Asymptote: Vertical asymptotes appear where the function is not defined. As the function is defined for all real numbers, there is no vertical asymptote.

Oblique Asymptote: As the function is not a rational function, there is also no oblique asymptote.

6. Sketch the graph:

7. The range of f(x) is $[0, \infty)$.