MENG555 Computational Fluid Dynamics (CFD)

Year and Semester: Graduate
Credit Hour: (3,0) 3
Pre/Corequisite(s): -

Catalog Description:

Prerequisite by Topic:
The student will be expected to have a good background in heat transfer and fluid dynamics and should have some programming experience with FORTRAN 90, or C or C++.

Textbooks:

References:

Course Objectives:
1. To introduce the basic principles in computational fluid dynamics
2. To develop methodologies which facilitate the application of the subject to practical problems

COURSE OUTLINE

Week 1 Introduction: (1 week)
What is CFD? How does a CFD code work? Problem solving with CFD.

Week 2-3 Conservation laws of fluid motion and boundary conditions: (2 weeks)

Week 4-5 The finite volume method for diffusion problems: (2 weeks)

Week 6 The finite volume method for convection-diffusion problems: (1 weeks)

Steady one dimensional convection and diffusion. The central difference, upwind, hybrid, power law, QUICK and other higher order schemes. Stability problems of the schemes. TVD schemes; flux limiter functions.

Week 7
Solution algorithms for pressure-velocity coupling in steady flows: (1 week)
The staggered and non-staggered grids. The momentum equations. The SIMPLE, SIMPLER, SIMPLEC and PISO algorithms.

Week 8
The finite volume method for unsteady flows: (1 week)

Week 9-11
Turbulence and its modeling: (3 weeks)

Week 12-13
Methods for dealing with complex geometries: (2 weeks)

Computer Usage:
Students are required to write simple computer programs for solving simple one-dimensional convection-diffusion and two-dimensional diffusion problems. CFD assignments will be given to be solved by using ANSYS CFX.

Teaching Techniques:
Over-head projector is used in the classroom.

GRADING POLICY

- Mid-term Examination: 20%
- Computer projects: 50%
- Final Examination: 30%

Instructor: İbrahim Sezai