• **Strict and Wide Sense Stationarity**

• **Autocorrelation Function of a Stationary Process**

• **Power Spectral Density**

Stationary Random Processes

- Stationarity refers to *time invariance* of some, or all, the statistics of a random process, *e.g.*, mean, autocorrelation, nth order distribution, *etc*

- We define two types of stationarity, *strict sense* (SSS) and *wide sense* (WSS)

- A random process $X(t)$ (or X_n) is said to be SSS if *all* its finite order distributions are time invariant, *i.e.*, the joint cdf (pdf, or pmf) of $X(t_1), X(t_2), \ldots, X(t_k)$ is the same as for $X(t_1 + \alpha), X(t_2 + \alpha), \ldots, X(t_k + \alpha)$, for all k, all t_1, t_2, \ldots, t_k, and all time shifts α

- So for a SSS process, the first order distribution is independent of t, and the second order distribution, *i.e.*, the distribution of any two samples $X(t_1)$ and $X(t_2)$, depends only on $\tau = t_2 - t_1$

To see this, note that from the definition of stationarity, for any t, the joint distribution of $X(t_1)$ and $X(t_2)$ is the same as the joint distribution of $X(t_1 + (t - t_1))$ and $X(t_2 + (t - t_1)) = X(t + (t_2 - t_1))$
A random process $X(t)$ is said to be WSS if its mean and autocorrelation functions are time invariant, i.e., $E(X(t)) = \mu$, independent of t and $R_X(t_1, t_2)$ is only a function of $(t_2 - t_1)$.

Since $R_X(t_1, t_2) = R_X(t_2, t_1)$, if $X(t)$ is WSS, $R_X(t_1, t_2)$ is only a function of $|t_2 - t_1|$. Clearly SSS \Rightarrow WSS, the converse, however, is not necessarily true.

For GRP, WSS \Rightarrow SSS, since the process is completely specified by its mean and autocorrelation functions.

Random walk is not WSS, since $R_X(n_1, n_2) = \min\{n_1, n_2\}$ is not time invariant -- in fact no independent increment process can be WSS.
Autocorrelation Function of WSS Processes

- Let $X(t)$ be a WSS process and relabel $R_X(t_1, t_2)$ as $R_X(\tau)$, where $\tau = t_2 - t_1$

1. $R_X(\tau)$ is real and even, i.e., $R_X(\tau) = R_X(-\tau)$ for all τ

2. $|R_X(\tau)| \leq R_X(0) = E(X^2(t))$, the “average power” of $X(t)$

 This can be shown using the Schwartz inequality

 For any t

 $$
 (R_X(\tau))^2 = (E(X(t)X(t+\tau)))^2 \\
 \leq E(X^2(t))E(X^2(t+\tau)) = (R_X(0))^2
 $$

3. If $R_X(T) = R_X(0)$ for some T, then $R_X(\tau)$ is periodic with period T and so is $X(t)$ (with probability 1)
Which Functions can be an $R_X(\tau)$?
Interpretation of Autocorrelation Function

• If $R_X(\tau)$ drops quickly with τ, this means that samples become uncorrelated quickly as we increase τ, conversely, if $R_X(\tau)$ drops slowly with τ, samples are highly correlated.

• So $R_X(\tau)$ is a measure of the rate of change of $X(t)$ with time t, i.e., “the frequency response of $X(t)$”

• It turned out that this is not just an interpretation – the Fourier Transform of $R_X(\tau)$ (the power spectral density) is in fact the average power density over frequency.
Power Spectral Density

- The power spectral density (psd) of a WSS random process $X(t)$, is the Fourier Transform of $R_X(\tau)$,

$$S_X(f) = \mathcal{F}[R_X(\tau)] = \int_{-\infty}^{\infty} R_X(\tau)e^{-j2\pi f \tau}d\tau$$

- For a discrete time process X_n, the power spectral density is the discrete Fourier Transform (DFT) of the sequence $R_X(n)$,

$$S_X(f) = \sum_{n=-\infty}^{\infty} R_X(n)e^{-j2\pi nf}, \text{ for } |f| < \frac{1}{2}$$

- $R_X(\tau)$ (or $R_X(n)$) can be recovered from $S_X(f)$ by taking the inverse Fourier Transform, i.e.,

$$R_X(\tau) = \int_{-\infty}^{\infty} S_X(f)e^{j2\pi f \tau}df, \text{ and inverse DFT,}$$

$$R_X(n) = \int_{-\frac{1}{2}}^{\frac{1}{2}} S_X(f)e^{j2\pi nf}df$$

Properties of the Power Spectral Density

1. $S_X(f)$ is real and even, since the Fourier Transform of a real and even function is real and even ($R_X(\tau)$ is real and even)

2. $S_X(f)$ is the power density, i.e., the average power of $X(t)$ in frequency band $[f_1, f_2]$ is $2 \int_{f_1}^{f_2} S_X(f)df$

- From (2) it follows that

$$S_X(f) \geq 0, \text{ and } E(X^2(t)) = \int_{-\infty}^{\infty} S_X(f)df,$$

i.e., the average power of $X(t)$ is the area under $S_X(f)$

- In general a function $S(f)$ is a psd iff it is real, even, nonnegative, and

$$\int_{-\infty}^{\infty} S(f)df < \infty$$
Examples

1. \(R_X(\tau) = e^{-2\alpha|\tau|} \)
 \(S_X(f) = \frac{\alpha}{\alpha^2 + (\pi f)^2} \)

2. \(R_X(\tau) = \frac{a^2}{2} \cos \omega \tau \)
 \(S_X(f) = \frac{a^2}{4} \)

3. \(R_X(n) = 2^{-|n|} \)
 \(S_X(f) = \frac{3}{5-4\cos 2\pi f} \)

4. Discrete time white noise process: \(X_n \) such that \(X_1, X_2, \ldots \) are zero mean, uncorrelated r.v.s with the same variance \(N \)

\[R_X(n) = \begin{cases} N & n = 0 \\ 0 & \text{otherwise} \end{cases} \]

\[S_X(f) \]

If \(X_n \) is also a GRP, then we get a discrete time WGN process
5. Bandlimited white noise process: WSS zero mean process \(X(t) \) with

\[
R_X(\tau) = NB \text{sinc} 2B\tau
\]

\[
S_X(f) = \frac{N}{2}
\]

For any \(t \), the samples \(X(t \pm \frac{n\tau}{2B}) \), for \(n = 0, 1, 2, \ldots \), are uncorrelated

6. White noise process: Now if we let \(B \rightarrow \infty \) in the previous example, we get a **white noise process**, which has

\[
S_X(f) = \frac{N}{2}, \text{ for all } f, \text{ and}
\]

\[
R_X(\tau) = \frac{N}{2} \delta(\tau)
\]

If, in addition, \(X(t) \) is a GRP, then we get the famous white gaussian noise (WGN) process

• Remarks on white noise:
 – For a white noise process all samples are uncorrelated
 – The process is not physically realizable, since it has infinite power
 – However, it plays a similar role in random processes to the role of a point mass in physics and delta function in EE
 – Thermal and shot noise are well modelled as white gaussian noise, since they have very flat psd over very wide band (GHzs)