The course aims to prepare the senior year students for their Manufacturing and Service Systems Design Project course (IENG492). The students are first introduced to the type of the manufacturing or service system that they are going to design as the requirement of IENG492 during the next academic semester. Then they are asked to conduct a market survey, submit information on the types of products/services they are going to produce, amount of sales, prices, competing producers, processes required to producing and distributing them, and relevant standards/laws/rules and regulations available in the place where the system will be established. Additionally, students are required to design the products/services, make forecasting for their sales, and prepare a feasibility study of the system.
The purpose of the course is to make an introduction and lay the foundations of modern methods of statistical quality control and improvements that are used in the manufacturing and service industries. The course also introduces basics of experimental design in determining quality products and reliability models. The students will first be introduced to some of the philosophies of quality control experts and their impact on quality. After a quick review of normal probability distribution, a few graphical methods used to monitor quality improvement will be given. Control charts for variables and attributes will be given with examples. Acceptance sampling plans for variables and attributes are to follow. Principles of design of experiments along with Taguchi method will be presented. Finally reliability of systems like series, parallel, series-paralel and paralel-serıes systems will be discussed.
This course is designed to introduce the engineering student with the basic principles of occupational safety and health management in industry. Development of safety and health function, concepts of hazard avoidance, impact of regulations, toxic substances, environmental control, noise, explosive materials, fire protection, personal protection and first aid will be introduced.
The purpose of this course is to give an introduction to economic analysis for decision making in engineering design, manufacturing equipment, and industrial projects. Subjects covered include interest, economic equivalence, time-value of money, project cash-flow analysis, decision making among alternatives, present worth, capitalized cost, equivalent-uniform, rate-of-return, benefit-cost ratio methods, replacement analysis, break-even analysis, sensitivity analysis, capital budgeting, inflation, elements of cost and cost estimation, payback analysis, methods of depreciation, after tax economic analysis, and computer applications in engineering economics.
This course is designed to introduce the student with the principles of safety and health hazards in industrial environment. It provides students with fundamentals of measurement, evaluation, regulation, and control of hazardous conditions, toxic substances, physical agents, and dangerous processes in the industrial environment. Skills development in record keeping, risk assessment and accident cause analysis will also be emphasized. The course will prepare the student for workplace safety and management.
The purpose of this course is to make an introduction to planning and design of manufacturing facilities. A balance of traditional and analytical approaches to facilities planning will be presented. Principles of management and facility organization. Capacity and technology selection. Analysis of production plans and processes to compute equipment and manpower requirements. Facility location. Plant layout. Identification of production support activities such as receiving, inventory management, material handling, storage and warehousing, packaging and shipping, maintenance planning.
This course is designed to teach the fundamentals of Work Study and Ergonomics, which are both used in the examination of human and work in all their contexts. Work Study topics covered in the course are: methods study, charting techniques, time study, work-station design principles, job evaluation and compensation. The topics covered in Ergonomics are human physiology and anthropometry, fatigue assessment, industrial hygiene, information retrieval and control in humans, and fundamentals of industrial product design. Industrial accidents, theories on causes of accidents, safety analysis and hazard prevention.