
Moment Methods (Method of 

Moments 

 
 

Charged Conducting Plate/ MoM Solution 
 

 Consider a square conducting plate 2a meters on a 
side lying on the z=0 plane with center at the origin. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Let              represent the surface charge density on the 

plate. Assume that the plate has zero thickness.  

 
 Then, V(x,y,z): 
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Where; 

 
 
 
 
When, 
 
 
The Integral Equation: 
 
 
 
 
 

This is the integral equation for  

 
 

Method of Moment Solution: 

 
Consider that the plate is divided into N square 

subsections. Define: 

 

 

 

and let: 
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Substituting this into the integral equation and satisfying 

the resultant equation at the midpoint             of each       , 

we get: 

 
 
Where, 
 
 
 
 
 
 

, is the potential at the center of          due to a uniform 

charge density of unit amplitude over   

 

Let : 

               denote the side length of each  

            the potential at the center of due to the unit 

charge density over its own surface. 
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So, 

 

 

 

 
 
 
 

 The potential at the center of         can simply be 
evaluated by treating the charge over          as if it 
were a point charge, so, 
 

 So, the matrix equation: 
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