Moment Methods (Method of
Moments

Charged Conducting Plate/ MoM Solution

® Consider a square conducting plate 2a meters on a
side lying on the z=0 plane with center at the origin.

Let o(y.,x) represent the surface charge density on the
plate. Assume that the plate has zero thickness.

® Then, V(x,y,2):
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Where;

1/2

R=[(x—x')2+(y—y')2+zz]
When, || <a, |y|<a, z=0, V(xy,z)—>V(const)

The Integral Equation:
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This is the integral equation for O

Method of Moment Solution:

Consider that the plate is divided into N square
subsections. Define:

f —

1 on AS,
0 on all other AS_

and let;

N
o(X,y) = Zan f
n=1



Substituting this into the integral equation and satisfying
the resultant equation at the midpoint ..¥») of each 45 |
we get:

N
V=>A,0, m=123..,N
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Where,
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Aw | is the potential at the center of 25 due to a uniform
charge density of unit amplitude over A4S,

Let:
o 2b=2—ﬁ|‘i‘| denote the side length of each 4s,

® A the potential at the center of due to the unit
charge density over its own surface.



So,
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® The potential at the center of AS, can simply be
evaluated by treating the charge over s, asifit
were a point charge, so,

® S0, the matrix equation:
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