LINEAR WIRE ANTENNAS

Infinitesimal Dipole - Hertzian Dipole

Infinitesimal Dipole (£ < 1/50)
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A current element | { refers to a filamentary current | flowing along an
elemental length (. Thisis approximated when a current | flowsina very short

of thin wire, if the length ( is so short (??) that the current is essentially constant
along the length.



Modeling:

Consider a short wire for which

(<< A

Plates at the ends of the dipole provide capacitive load.

1 A 1
Since { << A, then <<l n >>

Consider £ =1M (physical length).

c 3X10°
For f,=1MHz, /11:?1: 10° =300m
c 3X10°
For f,=1GHz 4, T
k(= 2—” = ij 277 =0.02094
A 300
K,( = 2—7[ = ij 27t =20.94
A, 0.3
We see that:
k. <<1
kKl >>1

The short length and the presence of the plates result in a uniform current |
along the entire wire.

(=1m length is very short at fl. Current is uniform. This length is not very

short at fg . Current is not uniform.



For the purpose of analysis we may consider that the short dipole appears as

follows:

Dipole and Geometry
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Define the current element: Id(=1d(4,

It is uniform alongdr¢.
It has sinusoidal time variation sine«t (e ).

Electric and Magnetic Fields

We know that

B=VxA
I-_|=£Vx,&
y7,

where A is the magnetic vector potential.

Ry
AN =217

—-JkR
e J

(jdv')

Jdv' — Kds — Id ("



So, for Hertzian Dipole:

VXE=—— \Y
0
V.D=p, VB=0
So, if we know Id ¢, we can obtain, A>B—>H > E

Calculate A:

- ij

dI'

u
XZ_— X Z
Y, 4£ Y,

where
A(T)=A(X,Y,2) is the magnetic vector potential at the point (X, Y, Z)

(X, Y, Z) coordinates are used for observation point,

(X,Y,Z) coordinates are used for the source point,

I' is the vector from the origin to the observation point.

T is the vector from the origin to the source point.
o N2 2 2
R:‘r—r ‘: (x—x) +(y—y) +(z—z)

dl is the infinitesimal length element along the source.

12

Since the source current is very small electrically, we may consider it to be just on
the origin, O.



So, | =constant w.r.t. (X',y',z'),

R~r.
dl | - é.de k :C()»\/(C,',Ll . Then,
14
_ g W % .A e ™
A(x,y,z):il jdzazzﬂ— a,
dr v 4 r
iz
r:(x2+y2+22)]/2
p ~— JKr
A=HLE 4
dr r

A is along the z-axis. It has only the z-component in the Cartesian coordinates.

In the spherical coordinates:

A = A cosé
A, =—Asing
A, =0

The magnetic flux density:

B=VXA

- — a

H :EVXA:_¢|:E(|’A9)_%:|
Y7 ru| or 06

Conducting the derivative operations:

H, =0



H,=0

H, = jﬂsiné’ 1+_i e
Arr Jkr

Calculate the electric field intensity:

VXH = jocE
E_ V-XH
joe

Which results:

E =7

r

MZ cose(lJr _ije‘“
27rr jkr

EgzjnMsinH 1+ _1 _ 1 > (e
A7y jkr (kr)

E, =0

KI /¢
Let E:

C
Then,

. 1 1 -
H =iCsing| =+— |e ™
)= (r jkrzj



H, = jkCsind i+_ 1 > (e
kr J(kr)
Let
jkC=D
H, = D5|n9+l?5|n62? -
kr J(kr)
1 1
Er has rz and r3
i 1 1
E, has r ol and 3

A z-directed current element (infinitesimal) kept at the origin has only the H¢ , E,

1

and E, components and further the fields have components that decay as ,

1 1

F and F away from the current element.

Thus, these expressions form a convenient basis for classifying the fields of any
antenna depending on the nature of decay of the antenna.

k*1lcos® .| 1 1
E =np— e o
2r (kr)"  j(kr)
21 poi _
Egzjnk I(smee_Jkr 1 N 1 1

Arr (kr) j(kr)2 (kr)3



27
For large values of kr Li.e., Kr>>1(or 7" >>1 or I >> A the terms

1 1 1
containing (kr)2 and (kr)3 decay much faster thanE . Therefore, at large

distances from the Hertzian dipole, we have only:

E | ki¢sing e
o= M dr r
ikl (sing e

H, =
dr r

Fields are in time phase.

E /u //Jo
HH =N=4—= =1207 = 377Q2 air, can be considered
; & &,

as uniform plane wave.

POWER / RADIATION RASISTANCE

INFINITESIMAL DIPOLE

Complex Poynting Vector:



Fields:

E9:j77

W =

7

= jn

Ifz 1+_i ok
27r jkr

kzlfsine{ 111 }ei”

4z | (kr) j(kr)2 (kr)3

H —Jﬂsm@( ! jej'“
Arr jkr

D4t (% 9]{ j(kif}

k||£|2cosesin0{ 1 }
1+

167°r3

Complex Power Moving in Radial Direction

2r

o

P= <ﬂ>VV.énds
S

[(aw, +aWw,).4,r*sinododg
0



1
_J(kr)3 Watt.

2
e Al VA

P= HWrrzsianHd(/ﬁ:n— 2
00

3

WH is purely imaginary, so it will not contribute to any real power.

Consider

P :%I(EXH*).énds :n(fj'—f

2
1.1

w

P=P_,+ ij(Wm —We)

r

P - power (in radial direction)

Prad = Time average radiated power (in radial direction)

Wi, =Time average magnetic energy density (in the radial direction)

~

W, —Time average electric energy density (in the radial direction)

~

2C‘)(Wm o We) = Time averaged imaginary (reactive) power (in the radial dir).

T
IDrad = U(EJ

We associate a resistance to Prad (radiation resistance) as:

Comparison gives:

2

1 ¢

A




1,2 7\ 1L
P =Z[IfR =5 Z ||=
rad ZH r 77(3)2.
27\ 0
R =n| ZZ |-
| 77(3)/1
2
Rr:80ﬂ2(£j
A
2\ 1
20(W_—W,)=-n| = ||—
(W~ ) U(C’Ji (kr)3

It is clear from the above equation that the radial electric energy must be larger
than radial magnetic energy.

For (large values of kr) kr >>1, 2a)(Wm - V~Ve) —0

And

DIRECTIVE GAIN

The procedure is:



U=rW

kKl{sing e

By = A r

Directive gain:
D, =1.5sin* @
Directivity=D,,, =1.5
Radiation Pattern:

U=u__ sin*g



