

1

EENG410 – Microprocessors I
Fall 06/07 – Lecture Notes # 12

Outline of the Lecture
• BIOS and DOS programming in Assembly
• BIOS INT 10H
• DOS INT 21H

BIOS AND DOS PROGRAMMING IN ASSEMBLY

 BIOS and DOS contain some very useful subroutines, which can be used through INT (interrupt)
instruction.

 The INT instruction works like a FAR call. When it is invoked, it saves CS:IP and the flags on the
stack and goes to the subroutine associated with the interrupt.

INT xx ;the interrupt number can be 00 – FFH (256 possible interrupts)

BIOS INT 10H PROGRAMMING

 INT 10H subroutines are in the ROM BIOS of the 80x86-based IBM PC.
 Depending on the value put in AH many function associated with the manipulation of screen text or
graphics is performed.

 Among these functions, clearing the screen, changing the cursor position, change the screen color
and drawing lines on the screen.

00,00 00,79
 00,4F(hex)

screen center

12,39
0C,27 (hex)

24,00 24,79
18,00 (hex) 18,4F(hex)

Monitor screen in text mode

 In normal text mode the screen is divided into
80 columns and 25 rows.

 Top left = 00,00
Bottom left = 24,00 (decimal)
Bottom right = 24,79 (decimal)

• Clearing the screen (INT 10H function 06H)

 AH=06 Scroll window up
 To clear the screen with INT 10H the following

registers must contain certain values.

AH=06, AL=00, BH=07, CX=0000
DH=24, DL=79

The code: MOV AH,06 ;AH=06 select the scroll function

MOV AL,00 ;number of lines to scroll (if AL=00 the entire page)
MOV BH,07 ;the display attribute (BH=07 normal)
MOV CH,00 ;row value of the start point
MOV CL,00 ;column value of the start point
MOV DH,24 ;row value of the ending point
MOV DL,79 ;column value of the ending point
INT 10H ;invoke the interrupt

More efficient coding: MOV AX,0600H ;scroll entire screen
 MOV BH,07 ;normal attribute
 MOV CX,0000 ;start at 00,00
 MOV DX,184FH ;end at 24,79 (hex=18,4F)
 INT 10H ;invoke the interrupt

2

• INT 10H function 02: setting the cursor to a specific location

AH=02 Set cursor position

BH= page number (BH=00) ; 00 represents the current viewed page.
DH = row
DL = column

Ex: Write the code to set the cursor position to row = 15 (= 0FH) and column = 25 (=19H).

 MOV AH,02 ;set cursor option
 MOV BH,00 ;page 0
 MOV DH,15 ;row position
 MOV DL,25 ;column position
 INT 10H ;invoke interrupt 10H

Ex: Write a program segment to (1) clear the screen and (2) set the cursor at the center of the screen.

;clearing the screen
 MOV AX,0600H ;scroll the entire page
 MOV BH,07 ;normal attribute
 MOV CX,0000 ;row and column of the top left
 MOV DX,184FH ;row and column of the bottom right
 INT 10H ;invoke interrupt 10H

;setting the cursor to the center of the screen
 MOV AH,02 ;set cursor option
 MOV BH,00 ;page 0
 MOV DH,12 ;center row position
 MOV DL,39 ;center column position

INT 10H ;invoke interrupt 10H

• INT 10H function 03: get current cursor position

AH=03 Read cursor position and size

Ex: MOV AH,03 ;option 03 of BIOS INT 10H (read cursor position and size)
 MOV BH,00 ;choose current (00) page
 INT 10H ;interrupt10H routine

After the execution of the above program: DH = current row, DL = current column CX
will provide info about the shape of the cursor.

DOS INT 21H PROGRAMMING

 INT 21H subroutines are provided by DOS Operating system.
 Depending on the value put in AH many functions such as inputting data from the keyboard and
displaying it on the screen can be performed.

INT 21H option 09: outputting a string of data to the monitor

 INT 21H can be used to send a set of ASCII data to the monitor.
 Register settings before INT 21H is invoked: AH=09

DX = the offset address of the ASCII data to be
displayed.

3

 The address in DX register is an offset address. Data is assumed to be the data segment.
 INT 21H option 09 will display the ASCII data string pointed at by DX until it encounters the

dollar sign ‘$’. Note that this option cannot display ‘$’ character on the screen.

Ex: ………………..
 DATA_ASC DB ‘I love MICROPROCESSORS’,’$’
 ……………….
 MOV AH,09 ;option 09 to display string of data
 MOV DX,OFFSET DATA_ASC ;DX offset address of data
 INT21H ;invoke the interrupt

INT 21H option 02: outputting a single character to the monitor
 To do that: AH=02 (AH is given 02)

 DL = is loaded with the ASCII character to be displayed.
 INT 21H is invoked.

Ex: MOV AH,02 ;option 02 displays one character
 MOV DL,’Y’ ;DL holds the character to be displayed
 INT 21H ;invoke the interrupt.

* This option can be used to display ‘$’ sign on the monitor.

INT 21H option 01: Keyboard input with echo (inputting a single character with echo)
 This function waits until a character is input from the keyboard, then echoes(displays) it to the

monitor.
 After the interrupt the character will be in AL.

Ex: MOV AH,01 ;option 01 inputs one character
 INT 21H ;after the interrupt, AL = input character (ASCII)

INT 21H option 07: Keyboard input without echo
 This function waits until a character is input from the keyboard, then character is not displayed

(echoed) to the monitor.
 After the interrupt the character will be in AL.

Ex: MOV AH,07 ;keyboard input without echo
 INT 21H ;after the interrupt, AL = input character (ASCII)

INT 21H option 0AH: Inputting a string of data from the keyboard

 This function enables input a string of data from the keyboard and to store it in the data segment.
 The register settings are: AH=0AH

DX= offset address of the string to be stored (called as the buffer area)

 Buffer area must be defined in the data segment.

Ex: …………………….
 ORG 0010H

DATA1 DB 6,?,6 DUP(FF) ;0010H=06, 0012H – 0017H=FF
……………………

 MOV AH,0AH ;string input option of INT 21H
 MOV DX,OFFSET DATA1 ;load the offset address of buffer
 INT 21H ;invoke the interrupt

4

 The following shows the memory contents of offset 0010H: Before input is entered!!

0010 0011 0012 0013 0014 0015 0016 0017
06 00 FF FF FF FF FF FF

 When the program is executed and the data is entered through the keyboard, the program will not

exit until the return key is pressed. Assume the data entered through the keyboard was,
 “USA” ,RETURN>

 The contents of memory locations starting at offset 0010H will be:

0010 0011 0012 0013 0014 0015 0016 0017
06 03 55 53 41 0D FF FF
 U S A CR

 The following is the step by step analysis:
0010=06 The size of the buffer must be defined in the first location
0011=03 The keyboard was pressed 3 times, U, S, A (excluding the RETURN)
0012=55 the hex ASCII code for letter U
0013=53 the hex ASCII code for letter S
0014=41 the hex ASCII code for letter A
0015=0D the hex ASCII code for CR (carriage return)

Note that the value 03 is generated and stored by DOS to indicate the number of characters that
entered.

• INT 16H Keyboard Programming:

 In the previous sections it was explained that INT 21H function AH=07, waits for the user to input
a character.

 In some programs a task must run continuously while checking a key press? Such cases require to
use INT 16H.

Checking a key press: AH=01

 Ex: MOV AH,01 ;check for key press
 INT 16H ;using INT 16H

 After the execution, ZF=0,if there is a key press;

ZF=1 if there is no key press.

Which key is pressed?

 In order to find out which key is pressed immediately after the above routine (INT 16H function
AH=01) the following routine (INT 16H function AH=00) must be called.

 Ex: MOV AH,0 ;get key pressed
 INT 16H ;using INT 16H

 Upon return, AL contains the ASCII character of the pressed key.

5

Outline of the Lecture
• MACROS in Assembly Language
• MACRO definition

Macros are predefined functions which involve a group of instructions to perform a special task which can
be used repeatedly.

For example:

• in order to print a string to the screen INT 21H together with 2 more instructions can be used (3 lines
of code).

• It doesn’t make sense to rewrite them every time they are needed.
• In order to reduce the time to write the code and reduce the length of the code macros can be used.
• Macros allow programmer to define the task (set of codes to perform a specific job) once only and

invoke it whenever/wherever it is needed.

MACRO definition:

name MACRO dummy1,dummy2,dummy3,…,dummyN
 …
 …
 …
 ENDM

Ex: Write a macro called STRING to which display a string of text to the monitor.

STRING MACRO DATA1
 MOV AH,09
 MOV DX,OFFSET DATA1
 INT 21H
 ENDM

The above code is the macro definition. You can invoke the above macro as follows:

; from the data segment
MESSAGE1 DB ‘What is your name?’,’$’
:
:

;from the code segment
 :
 STRING MESSAGE1 ; Assembler will invoke the macro to perform the defined function.
 :

Using MACROS in an Assembly Language Program:

 The Macros are defined outside the Code segment of an Assembly Language program and can be
invoked inside the code segment.

 There can be comments in Macro definition

Example: the following program contains 3 Macro definitions which are: clear the screen, display a
string and set the cursor position.

6

;THE FOLLOWING PROGRAM USES MACROS
;---
CLSCREEN MACRO ;THIS MACRO CLEARS THE SCREEN
 MOV AX,0600H
 MOV BH,07
 MOV CX,0
 MOV DX184FH
 INT 10H
 ENDM
;---
DISPSCREEN MACRO STRING ;THIS MACRO DISPLAYS A STRING OF DATA
 MOV AH,09
 MOV DX,OFFSET STRING
 INT 21H
 ENDM
;---
CURSOR MACRO ROW,COLUMN ;THIS MACRO SETS THE CURSOR POSITION
 MOV BH,00
 MOV AH,02
 MOV DH,ROW
 MOV DL,COLUMN
 INT 10H
 ENDM
;---
.MODEL SMALL
.STACK 64

.DATA
MESSAGE1 DB ‘My name ’,’$’
MESSAGE2 DB ‘is Ali’,’$’
MESSAGE3 DB ‘What is ‘,’$’
MESSAGE4 DB ‘your name?’,’$’

.CODE
MAIN: MOV AX,@DATA
 MOV DS,AX
 CLSCREEN
 CURSOR 2,4
 DISPSCREEN MESSAGE1
 CURSOR 3,4
 DISPSCREEN MESSAGE2
 CURSOR 10,4
 DISPSCREEN MESSAGE3
 CURSOR 11,4
 DISPSCREEN MESSAGE4
 MOV AH,4CH
 INT 21H
 END MAIN

LOCAL directive and its use in macros:

• If a label is needed to be used in a macro (e.g. JNZ BACK) the label must be declared as LOCAL to
the macro.

• The LOCAL directive must be right after the MACRO directive.
• The local directive can be used to declare all names and labels at once as follows.

LOCAL name1 OR
LOCAL name2 <==> LOCAL name1,name2,name3
LOCAL name3

7

;The Following Program Defines a Macro to multiply two words by repeated addition. Macro is used in the main
;procedure below 3 times.

;---
MULTIPLY MACRO VALUE1, VALUE2, RESULT
 LOCAL BACK ;
 ;THIS MACRO COMPUTES RESULT = VALUE1 x VALUE2
 MOV BX,VALUE1
 MOV CX,VALUE2
 SUB AX,AX
 MOV DX,AX
BACK: ADD AX,BX

ADC DX,00
LOOP BACK
MOV RESULT,AX
MOV RESULT+2,DX

 ENDM
;---
.MODEL SMALL
.STACK 64

.DATA
RESULT1 DW 2 DUP(?)
RESULT2 DW 2 DUP(?)
RESULT3 DW 2 DUP(?)

.CODE
MAIN: MOV AX,@DATA
 MOV DS,AX
 MULTIPLY 2000,500,RESULT1
 MULTIPLY 2500,500,RESULT2

MULTIPLY 300,400,RESULT3
 MOV AH,4CH
 INT 21H
 END MAIN

Note: The reason why the LOCAL directive must be used is as follows: When a MACRO is assembled in
the program, the body of the MACRO is expanded as many times as the MACRO function is
invoked/called. This means that, for example in the above case, the same BACK label will be expanded in
the program 3 times. As a result, there will be the same BACK label in 3 different locations. This confuses
the processor so it is an error.
 However if LOCAL directive is used the label which is defined as LOCAL in a MACRO will be the
only one to be considered. So, in the above example when a jump to BACK label is needed it will be the
local BACK label not the other two.

