

1

EEE 410 – Microprocessors I
Fall 05/06 – Lecture Notes # 13

Outline of the Lecture

• Signed Numbers and Signed Number Operations

SIGNED NUMBER ARITHMETIC OPERATIONS

➢ Until now we have seen unsigned numbers where entire 8-bit or 16-bit operand was used for the

magnitude.

➢ In order to represent positive and negative numbers signed numbers have been introduced. The

representation of signed numbers:

 The MSB is set aside for the sign (+ or –) and the rest of the bits are used

for the magnitude.

 The sign is represented by 0 for positive (+) numbers and 1 for (–)

negative numbers.

Signed byte operands:

D7 D6 D5 D4 D3 D2 D1 D0

sign

If D7=0 the operand is positive

If D7=1 it is negative.

Positive Numbers:

 The range of positive numbers that can be represented as a signed byte operand is 0 to +127.

 Ex: 0 0000 0000 Note: If a positive number is larger than

 +1 0000 0001 +127, a word-size operand must be

 +5 0000 0101 used.

 :: :::::::::::::::

 +127 0111 1111

Negative Numbers:

 For negative signed numbers D7=1, but the magnitude operand is represented in 2’s complement.

Although the assembler does the conversion, it is important to understand how the conversion works.

 To convert to negative number representation (2’s complement) follow the steps:

1. Write the magnitude of the number in 8-bit binary (no sign)

2. Invert each bit

3. Add 1 to it

 Ex: Show how the computer would represent –5

1. 0000 0101 5 in 8-bit binary

2. 1111 1010 invert each bit

3. 1111 1011 add 1 (hex = FBH)

This is the signed number representation of –5 in 2’s complement.

Ex: Show how the computer would represent –52

1. 0011 0100

2. 1100 1011

3. 1100 1100 (CCH)

Ex: Show the representation of –128

1. 1000 0000

2. 0111 1111

3. 1000 0000 (80H) Notice this is not negative zero (–0)

2

Byte-sized signed number ranges:

 Decimal Binary Hex

 –128 1000 0000 80

 –127 1000 0001 81

 –126 1000 0010 82

 : : : : : : : : : : : :

 –2 1111 1110 FE

 –1 1111 1111 FF

 0 0000 0000 00

 +1 0000 0001 01

 +2 0000 0010 02

: : : : : : : : : : : :

 +127 0111 1111 7F

Word-sized byte operands:

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

sign

If D15=0 the operand is positive

If D15=1 it is negative.

 Can be used for the representation of numbers between –32768 to +32767. Larger numbers must be

treated as a multiword numbers as unsigned numbers.

Decimal Binary Hex

 –32 768 1000 0000 0000 0000 8000

 –32 767 1000 0000 0000 0001 8001

 –32 766 1000 0000 0000 0010 8002

 : : : : : : : : : : : :

 –2 1111 1111 1111 1110 FFFE

 –1 1111 1111 1111 1111 FFFF

 0 0000 0000 0000 0000 0000

 +1 0000 0000 0000 0001 0001

 +2 0000 0000 0000 0010 0002

: : : : : : : : : : : :

 +32 766 0111 1111 1111 1110 7FFE

 +32 767 0111 1111 1111 1111 7FFF

Overflow problem in signed number operations

 When using signed numbers Overflow problem can arise after an operation. This problem arises if

the result in a register after an operation is too large. In such a case CPU sets the OF (Overflow Flag). The

programmer must consider the overflow case.

Ex: DATA1 DB +96

 DATA2 DB +70

 … …

 MOV AL,DATA1 ;AL=0110 0000 (60H)

 MOV BL,DATA2 ;BL=0100 0110 (46H)

 ADD AL,BL ;AL=1010 0110 (AL=A6H=-90 invalid!)

+ 96 0110 0000

+ 70 0100 0110

+166 1010 0110 According to the CPU this is –90, which is wrong.(OF=1, SF=1, CF=0)

3

 As defined before max positive signed number for an 8-bit register is +127. Because +166 is greater

than +127 the problem is arising. The overflow flag is set to inform the programmer that there is erroneous

result from the signed number operation above.

When the OF is set in 8-bit operations

 In 8-bit signed number operations, OF is set to 1 is either of the following two conditions occurs:

1. There is a carry out from D6 to D7, but no carry out from D7 (CF=0).

2. There is a carry out from D7 (CF=1), but no carry out from D6 to D7.

Ex: MOV DL,–128 ;DL=1000 0000 (80H)

 MOV CH, –2 ;CH=1111 1110 (FEH)

 ADD DL,CH ;DL=0111 1110 (DL=FEH=+126 invalid!)

-128 1000 0000

+ -2 1111 1110

–130 0111 1110 OF=1, SF=0, CF=1

According to the CPU, the result is +126, which is wrong. The error is indicated by the fact that

OF=1.

Ex: MOV AL,–2 ;AL=1111 1110 (FEH)

 MOV CL,–5 ;CL=1111 1011 (FBH)

 ADD CL,AL ;CL=1111 1001 (CL=F9H=-7 which is correct!)

 -2 1111 1110

+ -5 1111 1011

 -7 1111 1001 OF=0, SF=1 (negatieve) , CF=1 : The result is correct since OF=0.

Ex: MOV DH,+7 ;DH=0000 0111 (FEH)

 MOV BH,+18 ;BH=0001 0010 (FBH)

 ADD BH,DH ;BH=0001 1001 (CL=19H=+25 which is correct!)

 +7 0000 0111

+ +18 0001 0010

 +25 0001 1001 OF=0, SF=0 (positive) , CF=0 : The result is correct since OF=0.

OF in 16-bit operations

 In 16-bit signed number operations, OF is set to 1 in either of the cases:

1. There is a carry out from D14 to D15, but no carry out from D15 (CF=0).

2. There is a carry out from D15 (CF=1), but no carry out from D14 to D15.

Ex: MOV AX,62FH ;28 207 (MOV AX,+28807))

 MOV CX,13D4H ; 5076

 ADD AX,CX ;=33283 is expected result (out of range)

 6E2F 0110 1110 0010 1111

+ 13D4 0001 0011 1101 0100

 8203 1000 0010 0000 0011 = –32,253 incorrect! OF=1, SF=1, CF=0

4

Avoiding erroneous results in signed number operations

➢ In order to avoid the problem of signed number operations we can sign extend the operand. Sign

extension copies the sign bit (D7) of the lower byte of a register to the upper byte bits of of the register,

or copies the sign bit of a 16-bit register into another register.

➢ There are two commands used for sign extension.

CBW ; Convert signed Byte to signed Word

 CBW will copy D7 (the sign flag) of AL to all bits of AH. Notice that the operand is assumed to be

AL and the contents of AH is destroyed.

 Ex: MOV AL,+96 ;AL = 0110 0000

 CBW ;now AH= 0000 0000 and AL=0110 0000

 Ex: MOV AL,–2 ;AL = 1111 1110

 CBW ;now AH= 1111 1111 and AL=1111 1110

CWD ; Convert signed Word to signed Doubleword

 CWD will copy D15 (the sign flag) of AX to all bits of DX. Notice that the operand is assumed to be

AX and the contents of DX is destroyed.

 Ex: MOV AX,+260 ;AX = 0000 0001 0000 0100 or AX=0104H

 CWD ;DX = 0000H and AX=0104H

 Ex: MOV AX,–32766 ;AX = 1000 0000 0000 0010B or AX=8002H

 CWD ;DX = FFFFH and AX=8002H

➢ How can these instructions help correct the overflow error?

Lets give an example program which takes into consideration of correction of signed byte addition

operation.

Ex: DATA1 DB +96

 DATA2 DB +70

 RESULT DW ?

 …

 MOV AH,0 ;AH=0

 MOV AL,DATA1 ;get operand 1

 MOV BL,DATA2 ;get operand 2

 ADD AL,BL ;add them

 JNO OVER ;jump if there is no overflow (OF=0) to OVER

 MOV AL,DATA2 ;otherwise get operand 2 to

 CBW ;sign extend it

 MOV BX,AX

MOV AL,DATA1 ; get back operand 1 to

 CBW ;sign extend it

 ADD AX,BX ;add them

 OVER: MOV RESULT,AX ;save the result

