EENG582 : Artificial Neural Networks									
Department:									
Electrical and Electronic Engineering									
Progra	m Name:		Program Code: 27						
Electri	cal and Electronic Engineering		Trogram Couce 27						
Course	Number: EENG582	Credits:							
		3							
🛛 Rea	uired Course Elective Cou	rse (click and check the ar	ppropriate box)						
Prerequisite(s) - None									
Catalo	g Description:								
EENG	582 Artificial Neural Networks								
Neural	Network Concepts: what is a net	ral network? biological	neuron, artificial neuron, neural network						
topolog	ies. Learning in Neural Networks:	types of learning, learning	g rules, error correction learning, Hebbian						
learning	g. competitive learning. Boltzmann	learning. Application Tas	ks: function approximation. classification.						
associat	tion, application examples. Feedfo	orward Networks: percept	tron, multi-layer perceptron, radial basis						
function	n network, self-organizing map. Fe	edback Networks: Hopfiel	d network, Boltzmann machine, real-time						
recurren	nt network.	1	, , , , , , , , , , , , , , , , , , , ,						
Course	Web Page: https://opencourses.e	mu.edu.tr/course/view.pl	np?id=619#section-0						
Textbo	ok(s):								
1) Ne	ural Networks a Comprehensive-For	undation, 2 nd Ed. By Simor	n-Haykin, 2005						
2) Ne	ural Networks and Learning Machin	es - S.Hykin.3ed.2009							
Indicat	ive Basic Reading List:								
1)									
Course	Outline:								
CONTE	ENTS								
1.	BIOLOGICAL AND ARTIFICIAL NEURAL NETWORKS								
1.1.	Intrtoduction to Artificial Neural Networks								
1.2.	The Human Brain								
1.3.	Models of a Neuron								
1.4.	Neural Network Viewed as a Dirtected Graph								
1.5.	Neural Network Architectures								
1.6.	Knowledge Representation								
1./.	Artificial Intelligence and Neural Networks								
1.8.	Modelling Neurons								
1.9.	Tutorial with Selected Problems								
2.	LEARNING PROCESS								
2.1.	The Learning Process								
2.2.	Error Correction Learning								
2.3.	Memory Based Learning								
2.4.	Hebbian Learning								
2.5.	Competitive Learning								
2.6.	Boltzmann Learning								
2.7.	Credit Assignment Problem								
2.8.	Learning with a Teacher								
2.9.	Learning without a Teacher								
2.10.	Statistical Learning								
2.11.	Tutorial with Selected Problems								
3	SINCLE LAVED DEDCEDTRON								
5. 21	SINGLE LAYEK PERCEPTRON	, ADAPIIVE FILIEKING	J AND OF HIVIIZATION						
3.1.	Adoptivo Filtorino								
5.2. 33	Auapuve Filtering								
5.5.	Opuniization								

- 3.4. Unconstraint Optimization Techniques
- 3.5. Linear Least-Squares Filters
- 3.6. Least-Mean-Square Algorithm
- 3.7. Learning Curves
- 3.8. Learning Rate Annealing Techniques
- 3.9. Perceptron
- 3.10. Perceptron Convergence Theorem
- 3.11. Relation Between the Perceptron and Bayes
- 3.12. Tutorial with Selected Problems

4. MULTILAYER PERCEPTRON

- 4.1. Introduction
- 4.2. Multilayer Perceptron Architecture
- 4.3. Back-Propagation Algorithm
- 4.4. Summary of the Back-propagation Algorithm
- 4.5. XOR Problem
- 4.6. Heuristics for Making the Back -Propagation Algorithm Perfol'm Better
- 4.7. Output Representation and Decision Rule
- 4.8. Computer Experiment
- 4.9. Feature Detection
- 4.10. Back-Propagation and Differentiation
- 4.11. Hessian Matrix
- 4.12. Generalization
- 4.13. Approximations of Functions
- 4.14. Cross-Validation
- 4.15. Network Pruning Techniques
- 4.16. Virtues and Limitations of Back-Propagation Learning
- 4.17. Convolutional Neural Networks
- 4.18. Nonlinear Filtering
- 4.19. Small-scale Versus Large-scale Learning Problems

Course Learning Outcomes:

On successful completion of this course, all students will have developed knowledge and understanding of:

- a) the concept and working principles of Biological Neural Networks.
- b) the concept and working principles of Artificial Neural Networks.
- c) the process of learning.
- d) the concept of Single Layer Perceptron and Adaptive Filtering
- e) the concept of Optimization
- f) the concept of Multilayer Perceptron and Back Propagation Algorithm
- g) employing Artificial Neural Networks to solve real life problems using computer aided design and analysis tools (i.e. Matlab and Python).

Class Schedule:

3 hrs of lectures per week on Friday mornings

	Method	Percentage
	Midterm Exam(s)	30 %
Accommont	Term Project	20 %
Assessment	Homework (White paper about the project)	10 %
	Quizes	10 %
	Final Examination	30 %

Contribution of Course to Criterion 5 Credit Hours for: Mathematics & Basic Science: 2 Engineering Design: 2 General Education: 0

Relationship of Course to Student Outcomes

The course has been designed to contribute to the following student outcomes:

- 1. an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics.
- 3. an ability to communicate effectively with a range of audiences,
- 5. an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives,
- 6. an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
- 7. an ability to acquire and apply new knowledge as needed, using appropriate learning strategies

Contribution of Course Learning Outcomes to Student Outcomes									
Course Learning Outcome	1	2	3	4	5	6	7		
a) the concept and working principles of Biological Neural Networks.	•		•		•	•	•		
b) the concept and working principles of Artificial Neural Networks.	•		•		•	•	•		
c) the process of learning.							•		
d) the concept of Single Layer Perceptron and Adaptive Filtering	•		•		•	•	•		
e) the concept of Optimization	•								
f) the concept of Multilayer Perceptron and Back Propagation Algorithm	•					•	•		
Date Prepared: 20 April 2021									