Faculty of Engineering
ELECTRICAL AND ELECTRONIC ENGINEERING DEPARTMENT

EENG223 Circuit Theory I

Spring 2006-07

Instructor:
M. K. Uyguroğlu

Final EXAMINATION

June 08, 2007

Duration : 150 minutes

Number of Problems: 6

Good Luck

<table>
<thead>
<tr>
<th>STUDENT'S</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NUMBER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAME</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surname</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group No</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Problem</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>6</td>
<td>20</td>
</tr>
<tr>
<td>TOTAL</td>
<td>100</td>
</tr>
</tbody>
</table>
1. For the circuit in Fig. P1, find the value of v_0 using
 a. mesh analysis. (10 pts.)
 b. nodal analysis. (10 pts.)

KCL at v_0:
\[
\left(1 + \frac{1}{3}\right)v_0 - (1)(8 + v_x) = -14
\]
\[
\frac{4}{3}v_0 - v_x = -6 \quad \text{or} \quad 4v_0 - 3v_x = -18 \quad \cdots \cdots (1)
\]

KCL at $(8 + v_x)$:
\[
-1v_0 + \left(1 + \frac{1}{2}\right)(8 + v_x) - \frac{8}{2} - 2v_x = 0
\]
\[
-v_0 - \frac{1}{2}v_x = -8 \quad \text{or} \quad -2v_0 - v_x = -16 \quad \cdots \cdots (2)
\]

Multiply Eq.(2) by (-3) and add to (1) yields:
\[
10v_0 = 30 \Rightarrow v_0 = 3 \text{ V}
\]

Mesh (I) and mesh (II) constitute a SUPERMESH.
KVL around the supermesh:
\[
2i_1 + 8 + 3(i_2 - i_3) + 1(i_3 - i_1) = 0
\]
\[
2i_1 + 3(14 + i_1 - 4i_3) + i_3 - 4i_1 = -8
\]
\[
-10i_1 = -50
\]
\[
i_1 = 5 \text{ A}
\]
\[
v_0 = 3(i_3 - i_2) = 3(4i_1 - 14 - i_1) = 3(15 - 14)
\]
\[
v_0 = 3 \text{ V}
\]
2. Find v_x, i_a, and i_0 in the circuit in Fig. P2. (15 pts.)

Figure P2

KCL at the inverting input terminal of OP AMP (1):

$$1.98 \left(\frac{1}{3.3k} + \frac{1}{4.7k} \right) - \frac{1}{4.7k} v_{o1} = 0$$

$$v_{o1} = \left(1 + \frac{4.7}{3.3} \right) 1.98 = 4.8 \text{ V}$$

KCL at the inverting input terminal of OP AMP (2):

$$\frac{v_{o1}}{30k} + \frac{v_x}{20k} = 0$$

$$v_x = -\frac{2}{3} v_{o1} = -3.2 \text{ V}$$

$$i_a = \frac{4.8 - 1.98}{4.7k} = 0.6 \text{ mA}$$

$$i_0 = - \left(0.6m + \frac{4.8}{30k} \right) = -0.76 \text{ mA}$$
3. Use the principle of superposition to find i in the circuit in Fig. P3. (15 pts.)

Figure P3

17 V is active:

$$i_r = -\frac{17}{R_r} = -\frac{17}{4} \, A$$

by using current division principle:

$$i' = i_r \frac{2}{4} = -\frac{17}{8} \, A$$

6 V is active:

$$i'' = \frac{6}{R_r} = \frac{6}{(3/2 + 2)/3} = \frac{6}{48/31} = \frac{31}{8} \, A$$
2 A is active:

\[i'' = 2 \frac{2}{2 + \frac{6}{5}} = \frac{20}{16} \text{ A} \]

\[i = i' + i'' + i''' \]

\[i = -\frac{17}{8} + \frac{31}{8} + \frac{20}{16} = 3 \text{ A} \]
4. The variable resistor in the circuit in Fig. P4 is adjusted for maximum power transfer to \(R \).

a. Find the value of \(R \). (10 pts.)

b. Find the maximum power that can be delivered to \(R \). (5 pts.)

When the value of \(R = R_{TH} \) then it will absorb maximum power. The maximum power is

\[
P_{\text{max}} = \frac{V_{TH}^2}{4R_{TH}}
\]

In order to find \(V_{TH} \) we will find \(V_{oc} \)

\[
V_{oc} = 40 \times 5i_1 = -200i_1
\]

\[
i_1 = \frac{12 - \frac{V_{oc}}{5}}{4} = \frac{60 - V_{oc}}{20}
\]

Therefore

\[
V_{oc} = -200i_1 = -10(60 - V_{oc})
\]

\[-9V_{oc} = -600\]

\[
V_{oc} = \frac{600}{9} V
\]
By using current division principle:

\[i_{sc} = -5i_1 \frac{40}{48} = -\frac{25}{6} i_1 \]

\[v_i = -40 \left(5i_1 \frac{8}{48} \right) = -\frac{200}{6} i_1 \]

And

\[i_1 = \frac{12 - \frac{v_i}{5}}{4} = \frac{60 - v_i}{20} = \frac{1}{20} \left(-\frac{200}{6} i_1 \right) \]

\[i_1 = -\frac{18}{4} A \]

Therefore

\[i_{sc} = -\frac{25}{6} \left(-\frac{18}{4} \right) = \frac{75}{4} A \]

\[R_{TH} = \frac{V_{oc}}{i_{sc}} = \frac{600/9}{75/4} = \frac{32}{9} \Omega \]

When \(R = \frac{32}{9} \Omega \) it will absorb maximum power.

\[P_{max} = \frac{\left(\frac{600}{9} \right)^2}{4 \left(\frac{32}{9} \right)} = 312.5 W \]
5. Find i for $t \geq 0$ if the circuit in Fig. P5 is under dc conditions at $t = 0^-$. (15 pts.)

Figure P5

At $t = 0^-$

\[i(0^-) = \frac{16}{4k} = 4 \text{ mA} = i(0^+) \]

For $t \geq 0$
Since the circuit contains a source i will be:

$$i(t) = i(\infty) + \left[i(0) - i(\infty) \right] e^{-\frac{t}{\tau}}$$

At $t = \infty$, the circuit is under dc conditions

$$i(\infty) = \frac{16}{8k} = 2 \text{ mA}$$

$$\tau = \frac{L}{R_{eq}}$$

where R_{eq} is the equivalent resistance seen by the inductor.

$$R_{eq} = 8k \Omega$$

$$\tau = \frac{L}{R_{eq}} = \frac{1}{16k}$$

$$i(t) = i(\infty) + \left[i(0) - i(\infty) \right] e^{-\frac{t}{\tau}} = 2 + \left(4 - 2 \right) e^{-16000t} \text{ mA}$$

$$i(t) = 2 - 2e^{-16000t} \text{ mA}$$
6. Consider the circuit in Fig. P6. Find v for $t \geq 0$ if $v(0) = 4 \text{ V}$ and $i(0) = 3 \text{ A}$. (20 pts.)

![Circuit Diagram]

KCL at v:

$$i = \frac{1}{4} \frac{dv}{dt} + \frac{v}{1} \quad \ldots \ldots (1)$$

KVL around the loop (i):

$$3i + \frac{1}{4} \frac{di}{dt} + v = 16 \quad \ldots \ldots (2)$$

Subst. Eq.(1) into (2) yields:

$$3 \left(\frac{1}{4} \frac{dv}{dt} + \frac{v}{1} \right) + \frac{1}{4} \frac{d}{dt} \left(\frac{1}{4} \frac{dv}{dt} + \frac{v}{1} \right) + v = 16$$

$$\frac{3}{4} \frac{dv}{dt} + 3v + \frac{1}{16} \frac{d^2v}{dt^2} + \frac{1}{4} \frac{dv}{dt} + v = 16$$

Multiply both sides by 16:

$$\frac{d^2v}{dt^2} + 16 \frac{dv}{dt} + 64v = 16^2$$

Characteristic equation:

$$s^2 + 16s + 64 = 0$$

$$\therefore s_{1,2} = -8$$

The natural response v_n:

$$v_n = (A + Bt)e^{-8t}$$

The force response v_f:
$v_f = K$ the trial forced response.

$64K = 16^2$

$K = 4$

$v_f = 4\, V$

The complete response

$v = v_n + v_f$

$v = (A + Bt)e^{-8t} + 4$

$v(0) = 4 = A + 4 \Rightarrow A = 0$

By writing Eq(1) at $t = 0$

$i(0) = \frac{1}{4} \frac{dv(0)}{dt} + \frac{v(0)}{1}$

$\frac{dv(0)}{dt} = 4(i(0) - v(0)) = 4(3 - 4) = -4\, V / s$

$$\frac{dv}{dt} = Be^{-8t} - 8(A + Bt)e^{-8t}$$

$$\frac{dv(0)}{dt} = -4 = B - 8(A) \Rightarrow B = -4$$

$\therefore v(t) = (-4te^{-8t} + 4)\, V$